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Omnidirectional reflector using nanoporous SiO2
as a low-refractive-index material
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Triple-layer omnidirectional reflectors (ODRs) consisting of a semiconductor, a quarter-wavelength trans-
parent dielectric layer, and a metal have high reflectivities for all angles of incidence. Internal ODRs (am-
bient material’s refractive index n@1.0) are demonstrated that incorporate nanoporous SiO2, a low-
refractive-index material sn=1.23d, as well as dense SiO2 sn=1.46d. GaP and Ag serve as the semiconductor
and the metal layer, respectively. Reflectivity measurements, including angular dependence, are presented.
Calculated angle-integrated TE and TM reflectivities for ODRs employing nanoporous SiO2 are RintuTE
=99.9% and RintuTM=98.9%, respectively, indicating the high potential of the ODRs for low-loss waveguide
structures. © 2005 Optical Society of America

OCIS codes: 230.3670, 310.6860, 230.4040.
III–V nitride LEDs are becoming increasingly impor-
tant for visible-spectrum1 and UV2,3 emitters. Differ-
ent techniques have been employed to improve the
light-extraction efficiency,4 including flip-chip pack-
aging, interdigitated contacts, and triple-layer omni-
directional reflectors (ODRs).5,6 Such triple-layer
ODRs are internal reflectors that have an ambient
material with n@1. Metal reflectors’ reflectivity is
only around 95% with a semiconductor ambient.
Much higher reflectivities can be obtained with
triple-layer ODRs consisting of a semiconductor, a
quarter-wavelength dielectric layer, and a metal
layer as shown in Fig. 1(a). Triple-layer ODRs5,6 pos-
sess a much higher angle-integrated TE–TM aver-
aged reflectivity than conventional metal and distrib-
uted Bragg reflectors when used as internal
reflectors. It is well known that the refractive-index

contrast of optical components is an important figure

and Ag’s extinction coefficient, respectively.
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of merit, which creates a strong demand for novel
low-refractive-index (low-n) materials sn!1.46d.

In this Letter a triple-layer ODR using nanoporous
SiO2 as the dielectric layer is demonstrated and char-
acterized in terms of its angular TE and TM reflec-
tivity. Nanoporous SiO2 has a typical average pore
size of 4 nm and has been employed as a low-
dielectric-constant material in microelectronics
applications.7–9 However, its transparency and favor-
able mechanical and thermal characteristics8,9 make
it an ideal candidate for numerous low-n applica-
tions.

To obtain high reflectivity in the visible and
near-UV spectral range, we select Ag as the metal. A
double-side-polished 300-mm-thick GaP wafer is se-
lected as the semiconductor. At normal incidence, the
reflectivity of the triple-layer ODR shown in Fig. 1(a)

10
is given by
Rnormal = FU snsemi − ndiedsndie + nmetal + ikmetald + snsemi + ndiedsndie − nmetal − ikmetaldexps2ibhd

snsemi + ndiedsndie + nmetal + ikmetald + snsemi − ndiedsndie − nmetal − ikmetaldexps2ibhd
UG2

, s1d
where h is the thickness of the dielectric layer;
b= s2p /ldndie; and nsemi,ndie,nmetal, and kmetal are the
refractive indices11 of GaP, the dielectric, Ag,
h is selected to yield constructive interference
at normal incidence to maximize the reflectivity. The
optimal value of h ,hopt, in Eq. (1) can be derived
from10
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2b + wnormal =
4p

l
ndiehopt + wnormal = 2p. s2d

The phase change at the metal–dielectric interface
for normal incidence, wnormal, satisfies10

tan wnormal =
2kmetalndie

nmetal
2 + kmetal

2 − ndie
2 . s3d

Generally, the phase change is p,wnormal, s3/2dp, so
hopt is slightly smaller than the quarter-wavelength
thickness, l / s4ndied. The angle-integrated reflectivity
of the ODR, an important figure of merit for LEDs,
can be calculated from

Rint = E
0

p/2

RsudsinsudduYE
0

p/2

sinsuddu. s4d

The angle-dependent reflectivities, Rsud, of the in-
ternal ODRs were measured by use of a 632.8-nm co-
herent He–Ne laser with the samples mounted on a
goniometer. The detector is an Ando AQ2140 optical
multimeter with an AQ2741 sensor. The precision of
the measured reflectivity values at normal incidence
is better than ±0.15%. Because of total internal re-
flection at the air–GaP interface, the setup shown in
Fig. 1(a) can measure the internal ODR reflectivity
up to u=17.6°. However, in Fig. 1(b), a high-
refractive-index prism sn=1.778d and a high-index
fluid sn=1.662d are used to couple light into the GaP
at higher angles of incidence. This extends the mea-
surement with the maximum u to 25.5° for TE polar-
ization and 27.3° for TM polarization. The spectral
dependence of the reflectivity is measured with a
Jasco V-570 spectrophotometer. The angle-dependent
reflectivity Rsud of the ODR can be obtained by cor-
recting the measured result, Iout/Iin, for losses caused
by Fresnel reflections at the GaP–air interfaces [Fig.
1(a)], and GaP–high-n fluid–prism–air interfaces

Fig. 1. (a) Schematic of a triple-layer ODR. (b) Setup us-
ing a prism and high-index fluid allowing coupling of light
into GaP at angles of up to u=27.3°.
[Fig. 1(b)]. Multiple reflection events inside the GaP
and high-n fluid layer are taken into account. How-
ever, small absorption effects in the GaP, the high-n
fluid, and the prism are neglected, making the ex-
perimental reflectivities a lower limit of the actual in-
ternal ODR reflectivity.

Nanoporous SiO2 was fabricated by a solgel
process7 with modifications to suit the very small op-
tical thickness requirement. GaP was treated in oxy-
gen plasma to enhance the adhesion between the
substrate and the sol. The solgel solution was spun
on the plasma-treated GaP. Surface modification of
nanoporous SiO2 was then performed with hexa-
methyl disilazane, which does not affect the adhesion
of nanoporous SiO2 film to the substrate. A 500-nm-
thick Ag layer was deposited by electron-beam evapo-
ration. A micrograph of the nanoporous SiO2 thin film
is shown in Fig. 2. The refractive index and the thick-
ness of the nanoporous SiO2 were obtained by ellip-
sometry as nlow=1.23 and hlow=105 nm, respectively.
From Eqs. (2) and (3), hopt=104 nm. An ODR with
dense SiO2 was fabricated by plasma-enhanced
chemical-vapor deposition of SiO2 on GaP followed by
electron-beam evaporation of deposited Ag (500 nm).
The refractive index and the measured thickness are
nSiO2

=1.457 (Ref. 11) and hSiO2
=89 nm, respectively.

For dense SiO2, hopt=84 nm. In addition, a simple
metal reflector, 500-nm-thick Ag deposited on GaP,
was fabricated for comparison.

The measured reflectivity Rsud of the internal ODR
with nanoporous SiO2 used as a dielectric material
layer is shown in Fig. 3(a). At near-normal incidence
su=1.2° d, a TE reflectivity of 97.6% and TM reflectiv-
ity of 97.7% are measured. Within the measured
range, the TE reflectivity does not show a strong an-
gular dependence. The experimental results closely
follow the calculated reflectivity shown as solid
curves in Fig. 3. At normal incidence, the calculated
reflectivity is 98.6%. From Eq. (4), the triple-layer
ODR employing nanoporous SiO2 has outstanding
angle-integrated reflectivity, RintuTE=99.9% for the
TE polarization and RintuTM=98.9% for the TM polar-
ization.

The measured reflectivity Rsud of the internal ODR
with dense SiO2 as the dielectric material layer is
shown in Fig. 4(a). The measured curves are qualita-
tively similar to the measurements shown in Fig.
3(a). However, the quantitative reflectivity values are
lower. The measured near-normal incidence TE and

Fig. 2. Scanning electron micrograph of a 105-nm-thick

nanoporous SiO2 film.



1520 OPTICS LETTERS / Vol. 30, No. 12 / June 15, 2005
TM polarization reflectivities are 97.3% and 97.4%,
respectively. The calculated reflectivity at normal in-
cidence is 98.1%, and the angle-integrated reflectivi-
ties are RintuTE=99.8% for the TE polarization and
RintuTM=97.8% for the TM polarization. This trend is
fully consistent with the higher refractive index of
dense SiO2 compared with that of nanoporous SiO2.

For comparison, the measured reflectivities at
near-normal incidence, the calculated reflectivities at
normal incidence, and the angle-integrated reflectivi-
ties for the ODR with nanoporous SiO2, the ODR
with dense SiO2, and the Ag–GaP interface (without
the dielectric layer) are listed in Table 1. Comparison
indicates that the angle-integrated reflectivity of the
ODR employing nanoporous SiO2 is highest. Note
that mirror losses are given by 1−R, so small
changes in the reflectivity of reflectors with R<1.0

Fig. 3. Calculated (solid curves) and measured (dotted
curves) reflectivity versus (a) angle of incidence and (b)
wavelength for a triple-layer ODR with nanoporous SiO2.

Fig. 4. Calculated (solid curves) and measured (dotted
curves) reflectivity versus (a) angle of incidence and (b)
wavelength for a triple-layer ODR with dense SiO .
2
are significant, in particular, if multiple reflection
events occur, e.g., for waveguided modes in LEDs.

In conclusion, an internal omnidirectional reflector
has been reported that consists of a semiconductor, a
low-refractive-index dielectric layer, and a metal. The
angle-dependent reflectivities of the ODRs are mea-
sured at 632.8 nm for TE and TM polarization and
compared with calculations. It is found that, for an
ODR employing nanoporous SiO2, the angle-
integrated reflectivity of TE-polarized light, RintuTE
=99.9% and that of TM-polarized light, RintuTM
=98.9% significantly exceed the corresponding values
RintuTE=99.8% and RintuTM=97.8% of an ODR with
dense SiO2. This can be directly attributed to the
lower refractive index of the nanoporous SiO2 com-
pared with that of dense SiO2.
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Table 1. Measured and Calculated Reflectivity (%)
at l=632.8 nm for Different Reflectors

ODR

Reflectivity
With Nano-
porous SiO2

With
Dense SiO2 Ag/GaP

Measured R su=1.2° d 97.7 97.4 94.9
Calculated R su=0° d 98.6 98.1 93.6
Calculated Rint uTE 99.9 99.8 97.2
Calculated Rint uTM 98.9 97.8 94.4
(Academic, San Diego, Calif., 1985).


